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a  b  s  t  r  a  c  t

Battery  electric  vehicles  (BEVs)  offer the  potential  to reduce  both  oil imports  and  greenhouse  gas  emis-
sions,  but  high  upfront  costs  discourage  many  potential  purchasers.  Making  an  economic  comparison
with  conventional  alternatives  is complicated  in  part by  strong  sensitivity  to  drive  patterns,  vehicle
range,  and  charge  strategies  that  affect  vehicle  utilization  and  battery  wear.  Identifying  justifiable  battery
replacement  schedules  and  sufficiently  accounting  for  the  limited  range  of  a BEV  add  further  complex-
ity to  the  issue.  The  National  Renewable  Energy  Laboratory  developed  the Battery  Ownership  Model
to  address  these  and related  questions.  The  Battery  Ownership  Model  is  applied  here  to  examine  the
sensitivity  of BEV  economics  to  drive  patterns,  vehicle  range,  and  charge  strategies  when  a  high-fidelity
lectric vehicles
harge strategies
rive pattern
ange

battery  degradation  model,  financially  justified  battery  replacement  schedules,  and  two  different  means
of  accounting  for  a  BEV’s  unachievable  vehicle  miles  traveled  (VMT)  are  employed.  We  find  that  the
value  of  unachievable  VMT  with  a BEV  has a strong  impact  on  the  cost-optimal  range,  charge  strategy,
and battery  replacement  schedule;  that  the overall  cost  competitiveness  of a BEV  is  highly  sensitive  to
vehicle-specific  drive  patterns;  and  that  common  cross-sectional  drive  patterns  do  not  provide  consistent
representation  of  the  relative  cost of  a BEV.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Although there are many reasons why an individual car buyer
hooses one vehicle over another, economics is an important factor
or many consumers. For some end-users, such as fleet managers,
otal lifetime economics is one of the top factors affecting purchase
ecisions. In addition, understanding the economics of technolo-
ies that can support meeting broad societal objectives, such as
he reduction of oil imports and greenhouse gases, can aid policy-

akers in decision-making. Thus, there is a strong motivation to
xamine and compare the economics of today’s and tomorrow’s

ehicle technologies.

Plug-in electric vehicles, which include both plug-in hybrid elec-
ric vehicles and battery electric vehicles (BEVs), offer the potential

Abbreviations: BEV, battery electric vehicle; BOM, Battery Ownership Model;
S1, Charge Strategy 1 (right-away charge from home); CS2, Charge Strategy 2 (just-

n-time charge from home); CS3, Charge Strategy 3 (just-in-time charge from home,
ight-away charge from work); CV, conventional vehicle; DVMT, daily vehicle miles
raveled; EIA, Energy Information Administration; PDF, probability density function;
OC, state of charge; TCO, total cost of ownership; TCS, Traffic Choices Study; V2G,
ehicle to grid; V2B, vehicle to building; VMT, vehicle miles traveled.
∗ Corresponding author. Tel.: +1 720 989 1919; fax: +1 555 555 5555.

E-mail addresses: Jeremy.neubauer@nrel.gov, jeremy.s.neubauer@gmail.com
J. Neubauer).

378-7753/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2012.02.107
to reduce both oil imports and greenhouse gases, but assessing their
economics is complicated by several factors. For one, plug-in elec-
tric vehicle batteries—typically a major component of total vehicle
ownership costs—are subject to complex operational duty cycles
specific to vehicle platform and driving habits, thus making battery
life difficult to forecast. Further complicating battery life calcula-
tions are a battery’s sensitivity to local climate and charge strategy,
the proposals of some to reap revenue from vehicle-to-grid and
vehicle-to-building services, and the potential for second-use rev-
enue generation following the end of its automotive service life.

For plug-in hybrid electric vehicles with a limited all-electric
operational mode, electricity and gasoline costs become highly sen-
sitive to the distribution of daily vehicle miles traveled (DVMT)
experienced over the life of the vehicle as well, herein referred to as
a drive pattern. For example, some drivers may  be able to complete
the majority of their driving needs with a modest all-electric range,
thus using very little gasoline, while other drivers may  do just the
opposite. A BEV, on the other hand, may  require a driver to adapt his
or her drive patterns to the limited range of the vehicle, or alterna-
tively turn to fast charge or battery swapping options to complete
long trips. Such techniques drastically complicate economic com-

putations by introducing significant infrastructure requirements
and inserting additional parties into the equation.

With support from the Vehicle Technologies Program in the U.S.
Department of Energy, the National Renewable Energy Laboratory

dx.doi.org/10.1016/j.jpowsour.2012.02.107
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:Jeremy.neubauer@nrel.gov
mailto:jeremy.s.neubauer@gmail.com
dx.doi.org/10.1016/j.jpowsour.2012.02.107


2 ower 

h
k
a
e
s
s
c
m
(

2

v
p
t
c
r
t
r
p
u
i
t
m
w

i
i
A
u
t
a
t
f
r

2

c
t
a
p
n

B

a
a
t
p
t
i
e
b
t
t
c
c
c
f

70 J. Neubauer et al. / Journal of P

as developed a vehicle total cost of ownership (TCO) calculator
nown as the Battery Ownership Model (BOM) to address these
nd other challenges associated with the lifecycle economics of
lectric vehicles. In this paper, we apply the BOM to examine the
ensitivity of BEV economics to drive patterns, range, and charge
trategies when a high-fidelity battery degradation model, finan-
ially justified battery replacement schedules, and two different
eans of accounting for the unachievable vehicle miles traveled

VMT) of a BEV are employed.

. Approach

The BOM is an advanced TCO calculator that takes into account
arious scenarios of vehicle and component costs, battery and fuel
rice forecasts, drive patterns, battery wear, charging infrastruc-
ure costs, purchase incentives, financing, ownership, and other
riteria. The vehicle economics considered include vehicle and
elated infrastructure purchases, financing, fuel (gasoline and elec-
ricity) costs, non-fuel operating and maintenance costs, battery
eplacement, salvage value, and any costs passed on by a third
arty such as a service provider to account for the installation,
se, and availability of infrastructure. Battery degradation, charg-

ng strategies, and drive patterns play an important role in each of
hese elements and are addressed as described below. An approxi-

ate graphical representation of the key elements and flow of data
ithin the BOM is illustrated in Fig. 1.

A more detailed description of these elements can be found
n O’Keefe et al. [1]. The vehicle performance and sizing model
ncluded is the National Renewable Energy Laboratory’s Future
utomotive Systems Technology Simulator (FASTSim) developed
nder funding provided by the Vehicle Technologies Program in
he U.S. Department of Energy. Note that the battery second use
nd vehicle-to-grid elements are recent additions not described
herein; discussion and use of these modules will be presented in
uture papers. In addition, the battery use and wear element has
ecently received considerable updates, as discussed below.

.1. Cost metrics

The primary output of the BOM is the ratio of the total dis-
ounted costs of an advanced vehicle—in this discussion a BEV—to
hat of a conventional vehicle (CV), as defined in Eq. (1).  The vari-
ble c is the cost to the vehicle owner/operator during the given
eriod, i. The discount factor for the given period is d, and the total
umber of periods is N.

EV-to-CV cost ratio =

(∑N
i=1ci · di

)
BEV(∑N

i=1ci · di

)
CV

(1)

When using this approach, it is important that the inputs and
ssumptions applied to the calculation of the BEV and CV costs
re identical, such that the calculated cost ratio is indicative of
he relative cost of replacing a specific individual CV subject to a
articular drive pattern with a BEV operated under identical condi-
ions and requirements. However, in the absence of range extension
nfrastructures such as fast chargers, battery swapping facilities, or
lectric roadways, the maximum daily range of a BEV is limited by
attery size, vehicle efficiency, and charging strategy. This limits
he total achievable VMT  of a BEV under a given drive pattern, and
hus it is necessary to accurately identify which day’s travels can be

ompleted by the BEV. Considering this point enables the accurate
omputation of battery wear and the cost of BEV operation. Further
onsideration for the cost of the BEV’s unachievable VMT enables a
air comparison of BEV and CV ownership costs.
Sources 209 (2012) 269– 277

To achieve these ends, the electric range of the vehicle for the
first year is calculated via a detailed vehicle simulation, and then
reduced annually as the battery is calculated to degrade. When the
combination of range and charge strategy is incapable of achieving
the driving requirements of a given day, it is assumed that the BEV
is left at home and one of two  alternative means of transportation
is employed: either (1) a low-cost approach in which a CV already
owned by the household is used, or (2) a high-cost approach where
a CV is rented via a car-share program.

Costs for the low-cost alternative means of transportation
include the cost of fuel and per-mile tire and maintenance costs.
This captures all of the additional costs incurred by the extra use
of the CV and is therefore representative of the extra expense
that would be incurred by the household. Attributing them to the
BEV’s total cost leaves the total cost of the additionally owned CV
unaffected while ensuring that all of the household transportation
costs are accurately accounted for. Note that the effect of the extra
mileage accrued to the CV on its lifetime and residual value is not
accounted for, however. This, alongside questions over the avail-
ability of the CV when needed in place of the BEV, implies that
this accounting method is only valid when the frequency of use of
the CV is relatively low. A more detailed analysis considering the
complete driving requirements and fleet availability of a household
could address these issues, but is beyond the scope of this study.

Costs for the high-cost alternative means of transportation are
taken from a typical Zipcar rate structure, consisting of a $60 per
month annual membership fee, an $8.75 per hour rental rate capped
at $82 per day, and a mileage fee of $0.45 per mile for each mile
in excess of 180 miles per day [2].  To acknowledge the common
requirement of returning a car-share vehicle to the same location
from which it was  acquired, we assume 8 h of dwell time at the
destination along with the required drive time of the day when
computing the total duration of the car-share vehicle rental.

2.2. General variables

In all economic analyses we  examine a 15-year period of own-
ership from 2012 to 2027, covering the entire assumed life of the
vehicle. A driver discount rate of 8% is assumed, as are national
average temperatures and tax rates for battery purchases, vehicle
purchases, and vehicle registration. Although a $7500 BEV federal
tax credit is accounted for, available state tax credits are ignored.

2.3. Battery degradation and replacement

A high-fidelity degradation model [3] for
nickel–cobalt–aluminum lithium ion batteries capable of consid-
ering complex duty cycles and accurately capturing the impact
of depth of discharge, temperature, and state of charge (SOC) has
been incorporated into the BOM. Note that the effects of voltage
are captured by accounting for the SOC history of the battery.
Each of these factors has been shown to strongly affect battery
performance over time, often in a nonlinear fashion, yet are
commonly ignored or coarsely estimated in previous TCO studies.
The effect of charge and discharge rate, which has not been directly
incorporated into our employed degradation model, is assumed
to have a minimal affect over the range of operational conditions
explored herein.

In the BOM, our degradation model calculates capacity loss
and resistance growth at the end of each service year based on
the selected drive pattern, charge strategy, and environmental
conditions, which are used in turn to compute the annual miles

achievable by the BEV each year. The maximum charge SOC and
timing of charge operations are selectively set as discussed later.
Minimum SOC is adjusted each year such that no less than 80%
of BOL power can be delivered at the end of charge depleting
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expect that the range of the BEV will strongly impact this cost ratio
on the basis that a larger range will enable more trips, but incur
higher upfront costs while also impact battery life. To assess this
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Fig. 1. Key elements and data flow

peration. Thus, minimum SOC generally increases over time as
esistance grows. In this manner, we translate the effect of power
ade to a reduction in available energy, and thereby vehicle range.

We  leverage this capability to employ bounded, cost-optimal
attery replacement schedules. The BOM first calculates the degra-
ation and resultant available energy of the battery for each year
p to a prescribed technical limit. In this study, that limit is defined
y reaching a 15-year calendar limit or the loss of 50% of initial bat-
ery capacity. The 15-year calendar limit is selected to be coincident
ith the life of the vehicle, while the 50% of initial battery capacity

imit is intended to represent the point at which the battery begins
o degrade at a vastly accelerated rate and may no longer be safe
or automotive use. Alternative values could be employed, prefer-
bly justified by life test data; however, such data is not available
t present. The TCO is then computed for each possible automo-
ive service tenure up to this limit, and the point at which TCO
s minimized is employed for determining battery replacements.
ote that a labor fee of $500 is included for each battery replace-
ent in the TCO calculations, assuming a single technician working

pproximately 5 h at $100 per hour [4].  This framework therefore
epresents a cost-justified approach to determining battery life,
ather than the arbitrary independent election of time, mileage, or
apacity limits which may  be inappropriate for accurate economic
nalyses.

.4. Gasoline and electricity prices
National average gasoline price forecasts, as reported in the
nergy Information Administration’s (EIA’s) 2011 high oil price sce-
ario [5],  are employed to calculate recurring energy costs. This
cenario is selected as it best agrees with EIA’s reported actual 2011
in the Battery Ownership Model.

gasoline costs [6].  Electricity price projections from the EIA’s 2011
baseline scenario are used to calculate energy costs, as its 2011
values agreed well with actual prices [6]. Both the gasoline and
electricity prices employed in this study are shown in Fig. 2.

2.5. Electric range

The economics of BEVs and CVs are innately different—BEVs
generally exhibit a high upfront cost but low operating costs, and
CVs vice versa. Thus, increasing the total mileage achieved with
a BEV is a path towards improving the BEV-to-CV cost ratio. We
 $0 .114 $1 .00
20302025202020152010

Year

Fig. 2. Employed retail gasoline and electricity prices (2012 dollars).
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Table  1
Employed charge strategies.

Abbreviation Description

CS1 Right-away charge at home
CS2 Just-in-time charge at home
CS3a Just-in-time charge at home,

right-away charge at work
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a Note that the cost of the charger and electricity at work are not accounted for
n  economic computations.

ependency, we simulate three BEVs with ranges of 50, 75, and
00 miles.

.6. Charge strategy

Charge strategies can also affect economics via recurring costs,
pfront costs, and achieved mileage. Adjusting the timing of charge
vents can extend battery life and reduce battery replacement
osts. For a prescribed range, raising the maximum allowed SOC
f the battery will decrease battery size and thereby initial cost,
ut will shorten battery life by increasing both exposure to higher
oltages and the depth of discharge of each cycle. Increasing the
requency of charging (e.g., charging both at home and at work)
an effectively increase the allowable daily mileage of a BEV, thus
ncreasing total achieved mileage, but will affect battery life by
ncreasing the number of cycles and generally reducing the depth
f discharge.

We vary the maximum SOC limit of the battery from 90% to
00% in 5% increments. Note that battery size is increased as max-

mum SOC is decreased to maintain the prescribed range of 50,
5, or 100 miles. This effectively assumes the vehicle manufac-
urer is planning for and controlling maximum SOC rather than the
nd user controlling it and will pit extensions of battery longevity
gainst the increased upfront cost of a larger battery.

Three different charge timings are employed as well, as summa-
ized in Table 1. First is right-away charge at home, where charging
s initiated immediately when a vehicle returns home. Second is
ust-in-time charge at home, where charge is initiated such that
he battery reaches its maximum SOC concurrently with the time
f departure. To make these bounding cases for right-away and just-
n-time charge methodologies, we assume that no time is spent at a
estination; thus, the rest time at either the maximum SOC (right-
way) or the day’s minimum SOC (just-in-time) is calculated by
ubtracting the required drive and charge time from a 24-h period.

Third is the combination of just-in-time charge at home and
ight-away charge at work. In this final scenario we  identify work
ays as those where the daily distance is between one and two
imes the mode distance of the drive pattern. On these days we
ssume that half of the mode distance is traveled in the morning,
ollowed by an 8-h stay at work, then the remainder of the day’s
riving distance is completed prior to returning home. Charging

s initiated immediately upon arriving at work, whereas at-home
harging is delayed to achieve the maximum SOC concurrently with
eaving for the first trip on the subsequent day.

When this third charge strategy is implemented, the cost of
he at-work charger and electricity for the at-work charging is not
ccounted for. This is done to provide a best-case scenario on the
ssumption that the infrastructure and electricity are provided by
he government or employer as a benefit for driving a plug-in elec-
ric vehicle. We  acknowledge that this may  only be applicable to
elect early adopters and may  not apply in the long term on a larger

cale. Accurately accounting for these costs requires consideration
f a third party responsible for the necessary infrastructure and
lectricity of the at-work charge point, its commercial electricity
rices, hardware costs, approach to financing, return on equity, etc.,
Fig. 3. Battery pack and power electronics manufactured cost schedule.

which will be addressed in a future publication. It is not expected
that including these costs will substantially affect our results, how-
ever.

For all charging strategies we  assume an average charge power
of 5 kW,  which determines the required charge time. This approx-
imates an 85% efficient charger attached to a 32 amp, 240 V
connection when an allowance for a reduced power taper charge is
consider near the end of charge. Note that the charger efficiency is
accounted for when computing the amount of electricity consumed
from the grid. Drive time is computed by dividing the DVMT by an
assumed average speed of 42 miles per hour. This speed is chosen
to be representative of 55% city driving and 45% highway driving
per [7],  which aligns with our calculation of vehicle efficiency.

2.7. Vehicle performance and cost

We assume a vehicle platform sized similarly to that of a Chevro-
let Cruze. A glider mass of 1139 kg, coefficient of drag of 0.29, and
total frontal area of 2.27 m2 are employed in the simulation. Bat-
tery, motor, and power electronics specifications are calculated to
achieve a 0–60 mph  acceleration time of 9 s and a vehicle range
specific to the case at hand. Vehicle electricity consumption is
calculated via simulation of both the highway and urban driv-
ing dynamometer schedule weighted and combined to effectively
recreate the U.S. Environmental Protection Agency window sticker
rating [8].  A constant auxiliary load of 300 W is included during
drive cycle simulation, representative of only minimal system loads
exclusive of cabin heating or air conditioning [9].  Tire and mainte-
nance costs are set at $0.0533 per mile for both CVs and BEVs, per
the AAA’s 2010 estimate of typical mid-size car costs [10].

Battery and drivetrain manufacturing costs are computed based
upon these results, the selected 2012 start year, and the compo-
nent cost schedule shown in Fig. 3, the latter adapted from the
U.S. Department of Energy’s future component cost targets [11,12].
This yields a cost of $500 per kWh  for batteries and $16.2 per kW
for power electronics at the initial point of purchase, to which a
manufacturing-to-retail markup factor of 1.5 is applied [13–15].
Note that the future battery costs are important for computing
the cost of battery replacements and battery salvage value when
applicable.

The cost or value of battery recycling is ignored due to the
high level of uncertainty involved. The errors associated with this
assumption are expected to be small due to the expected low rel-
ative cost of recycling and the impact of the time value of money.
Similarly, salvage value due to potential battery secondary use is
also ignored. However, the remaining automotive value of a bat-

tery is calculated by prorating its remaining life against the cost of
new batteries at the 15-year driver time horizon and discounting
that value by 25% when applicable.
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Table  2
Vehicle specifications.

Vehicle Electric
range (mi)

Maximum
SOC

Engine or motor
power (kW)

Battery energy
(kWh)

Vehicle efficiency
(kWh/mi)

2012 vehicle
retail price

CV 0 n/a 100 0 32 mi/gal $17,687

BEV50 50
100% 79.7 16.6 0.332 $29,098
95%  80.3 17.5 0.333 $29,791
90%  80.8 18.6 0.334 $30,606

BEV75 75
100% 85.3 25.7 0.343 $36,050
95%  86.3 27.2 0.345 $37,193
90% 87.2  28.8 0.347 $38,469
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Projected annual mileage was  also calculated for each vehi-
cle (Fig. 5). Annual mileage for the TCS cross-sectional PDF  is
9910 miles per year, which agrees well with the longitudinal data.
Note that this is slightly less than the national average annual VMT
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For calculation of the BEV-to-CV cost ratio, we  also simulate a
V under identical technical and economic assumptions, the key
ifference being the use of an internal combustion powered drive-
rain. A study of currently and recently available CVs, hybrid electric
ehicles, plug-in hybrid electric vehicles and BEVs suggests that the
ost of conventional drivetrains are reasonably well estimated by
ombining a flat fee of $531 with a fee that scales with engine power
t the rate of $14.5 per kW,  where the difference in cost and retail
rice is captured by our manufacturing-to-retail markup factor of
.5 [18]. This same data can be used to calculate a glider price of
14,715.50 (not subject to the 1.5 markup factor) for the midsize
ehicle class we consider, which we apply to both our CV and BEVs.
he resultant CV demonstrates 32 miles per gallon with a calculated
etail price of $17,687, similar to that of a 2012 Chevrolet Cruze. The
V and BEV vehicle specifications are summarized in Table 2.

.8. Employed driving data

The BOM requires that a drive pattern in the form of a DVMT
robability distribution function (PDF) be input for calculating total
iles traveled, total all-electric miles traveled, battery wear, etc.
erein we employ real world driving data collected from the Puget
ound Regional Council’s 2007 Traffic Choices Study (TCS) to gen-
rate the necessary DVMT PDFs [16].

The TCS was an investigation of the response of travel behav-
or to variable toll charges in the Seattle metropolitan area. The
tudy placed global positioning systems in 445 vehicles from
75 volunteer households that recorded driving data over an 18-
onth average per household period. The experiment started
ith a baseline period in which no artificial tolls were applied to

ffect behavior. We  process the data for use in this study by (1)
nly considering data collected during the approximately 3-month
aseline period, (2) eliminating vehicles for which no driving took
lace during the baseline period, (3) eliminating vehicles for which
ignificant errors in data recording were identified, and (4) reduc-
ng detailed trip data to DVMT based upon the length of each trip
nd the date on which it was started. The resultant data are then
onverted into 398 longitudinal (one vehicle, multiple days) dis-
rete DVMT PDFs for use by the BOM. For comparison purposes,
he DVMT of each of the 398 vehicles are combined to create a
ross-sectional DVMT PDF representative of the fleet of TCS vehi-
les. A cross-sectional DVMT PDF is created from the 2001 National
ighway Travel Survey data as well [17].

In addition, we calculate the median, mean, and standard devi-
tion of DVMT for each individual vehicle. The data are then
ompiled into the three PDFs shown in Fig. 4. For these calcula-

ions, days where the vehicle is not driven are excluded. These plots
eveal that DVMT median, mean, and standard deviation values are
ypically around 23, 30, and 17 miles, respectively. For comparison,
he TCS cross-sectional DVMT PDF yields DVMT median, mean, and
35.4 0.355 $43,487
37.6 0.358 $45,174
40.0 0.361 $47,014

standard deviation values of 25, 34, and 49 miles, respectively. Note
that although the median and mean values for the cross-section
compares well to the longitudinal data, the standard deviation of
the cross-section is not representative of what is commonly seen
from the individual longitudinal DVMT PDFs.
1

Miles

Fig. 4. PDF of median, mean, and standard deviation of DVMT for the processed TCS
study data.
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the CV on no less than 60 days per year for more than 80% of the
top quartile drive patterns. Further investigation reveals that this
increases to more than 100 days per year for approximately half of
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Fig. 5. PDF of calculated annual mileage for the processed TCS study data.

f 11,078 reported in [17] and of 12,375 reported in [19], but such
ariation is to be expected in a relatively small, geographically
ocused sampling of vehicles.

These drive patterns are expected to strongly affect the BEV-
o-CV cost ratio, as distributions with shorter typical DVMTs will
e able to complete a larger fraction of their total mileage with a
ange-restricted BEV. However, extremely short DVMTs associated
ith fewer annual miles will have a negative effect on the cost

atio. To study the complex sensitivity of cost to these factors, we
imulate the DVMT PDF drive patterns of each of the 398 individual
CS vehicles for every combination of the aforementioned range
nd charge strategy variables.

The primary shortcomings of the TCS data as we  use it are that (1)
ach drive pattern does not fully capture seasonal variations, (2) it
oes not account for changes in driving behavior as the vehicle ages,
nd (3) sampling biases imply the data may  not fairly represent the
istribution of income levels, household size, proximity to public
ransit, etc., beyond or even within the Seattle area. These factors
revent our analysis from making blanket statements regarding the
verall cost effectiveness of BEVs at the national level; however,
hey do not prevent a valuable demonstration and exploration of
he sensitivity of BEV economics to drive patterns, vehicle range,
nd charge strategies.

. Results and discussion

To study the interplay of three vehicle ranges, three maximum
OCs, three charge timing schedules, and two alternative means
f accounting for unachievable VMT  with 398 drive patterns, we
imulate 21,438 unique cases. Presentation and interpretation of
his many data points can be challenging. For a specific set of
ssumptions, it is useful to inspect a single cumulative distribution
unction of all 398 drive patterns. However, discussion of 54 cumu-
ative distribution functions covering all combinations of range,
harge strategies, and unachievable VMT  accounting methods is not
traightforward either. We  therefore employ a 75th percentile BEV-
o-CV cost ratio metric, for which 25% of all vehicle drive patterns
xhibit a lower BEV-to-CV cost ratio. This metric reveals that one
f the strongest sensitivities in our analysis is the cost of unachiev-
ble VMT; therefore, we divide our subsequent presentation and
iscussion of results accordingly.

.1. Low cost of unachievable VMT

The cost of unachievable VMT  is low where we assume that
 second, conventionally powered, range-unlimited vehicle also

wned by the household is available for days in which the total
raveled distance exceeds the range of the BEV. The CV only incurs
he fuel, tire, and maintenance costs. This directly affects our TCO
alculations by reducing the cost of the non-BEV VMT, but also
Fig. 6. 75th percentile BEV-to-CV cost ratios for low cost of unachievable VMT.

indirectly affects TCO via battery lifetime. In essence, our cost-
optimal decision to replace the battery is driven by the comparison
of the value of increased BEV VMT  (resulting from the higher capac-
ity of the new battery) with the cost of covering those miles via the
alternative mode of transportation. Because the cost of the alterna-
tive mode of transportation is exceptionally low in this scenario, it is
highly unlikely that the savings created by increased electric range
will justify the cost of a new battery. Thus, we find that it is gener-
ally most cost effective to not replace the original battery—indeed,
every case simulated with the low cost of unachievable VMT  had a
battery life equal to our maximum calendar limit of 15 years. Note
that no cases were limited by the imposed 50% capacity limit.

The combination of these effects and the high cost of batteries
(relative to a conventional powertrain) leads us to the conclusion
that election of the highest maximum SOC and shortest range con-
sidered herein will maximize cost-effectiveness, as seen in Fig. 6.
The positive impact of reduced upfront battery cost significantly
outweighs the negative impact of reduced electric range and accel-
erated battery degradation resultant from these parameters. This
leads to a BEV-to-CV cost ratio below 1.0 for many cases, implying
that ownership of a BEV is more cost effective than ownership of a
CV.

The low cost of unachievable VMT  assumption, where we
assume a CV to be available at the per-mile cost of fuel, tires, and
maintenance, is a major factor in enabling these results. The validity
of this assumption is most applicable to multi-vehicle households
when the frequency of use of the CV is low, thus minimizing the
chance that the CV—which may  be principally utilized by another
member of the household—is unavailable or unsuitable. An anal-
ysis of the frequency of CV use during the first year of operation
is presented in Fig. 7, performed for all three vehicle ranges, the
CS2 charge strategy, and 100% max  SOC. It shows that while very
few drive patterns can be completely served by a BEV of any of
the ranges explored herein, the BEV75 and BEV100 require the use
of the CV less than 41 days out of the year for a large fraction of
drive patterns. However, it also shows that the BEV50 requires use
Number of days per year an  alterna�ve mode of transpo rta�on 
must be em ployed

Fig. 7. Frequency at which an alternate means of transportation must be procured
for the top quartile of most cost-effective drive patterns.
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ig. 8. Fraction of total VMT  completed by BEV for the top quartile of cost-effective
rive patterns under the high cost of unachievable VMT  assumption.

he top quartile drive patterns. Although it is currently unclear at
hat point the frequency of CV use will notably impact the validity

f our assumption, these numbers do encourage additional analyses
hat account for a household’s collective driving requirements and
eet size each day of the year, particularly for BEVs with a 50-mile
r shorter all electric range.

In Fig. 8 this behavior is translated to the percentage of total
MT over the 15 year analysis period that is completed by the BEV,
veraged over all drive patterns within each scenario. Here, the lim-
ted utility of a BEV50 charged only once per day is clearly evident.
n the other hand, we see that the BEV100 enables approximately
0% of a drive pattern’s total VMT  to be completed electrically on
verage.

Regarding the sensitivity of cost to drive patterns, we find that
he ratio of the highest BEV-to-CV cost ratio (corresponding to the
east cost-effective drive pattern for a given set of assumptions) to
he lowest BEV-to-CV cost ratio (corresponding to the most cost-
ffective drive pattern for a given set of assumptions) can reach
early 2:1 for the low cost of unachievable VMT  cases, as seen in
ig. 9. However, it is somewhat sensitive to vehicle range and charge
trategy, dipping to as low as 1.6:1 as range decreases. Calculation
f the BEV-to-CV cost ratio using cross-sectional TCS and National
ighway Travel Survey drive patterns underestimates the BEV to
V cost ratio for 52–56% and 60–64% of the results produced using
ehicle specific longitudinal TCS drive patterns, respectively, when

 low cost of unachievable VMT  is assumed.

.2. High cost of unachievable VMT

When the cost of unachievable VMT  is increased to the level
ncurred by a typical car-sharing program, both the economic sen-
itivity to charge strategy and the cost-optimal battery retirement
chedules change significantly. Recall that shorter 50-mile range
ehicles yielded considerably more cost-effective solutions to the
xclusion of the employed charge strategy under the low cost of

nachievable VMT  assumption. Use of the high cost of unachievable
MT  assumption, however, shows that the 50-mile range vehicle
ffers both the lowest and highest cost option dependent upon
hich charge strategy is elected, as seen in Fig. 10.  We  also find that
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ig. 9. Ratio of highest to lowest BEV-to-CV cost ratio for low cost of unachievable
MT.
Fig. 10. 75th percentile BEV-to-CV cost ratios for high cost of unachievable VMT.

the 75-mile range vehicle is cost-optimal under all charge strategies
with the exception of the BEV50 charged from home and work.

In contrast to the low cost of unachievable VMT  cases where bat-
tery replacement was  never economically incentivized, calculated
cost-optimal battery lifetimes under the high cost of unachievable
VMT assumption now vary considerably as seen in Fig. 11.  Here the
increased BEV range that comes with a fresh battery is more highly
valued, as it results in less use of the pricey car share service. We
observe that lower maximum SOC and switching from right-away
to just-in-time charge timing both increase battery life, as expected.
What was  slightly unexpected was the increase in battery life from
charging both at home and at work; not only does this strategy
increase the utility of the vehicle, it also may extend the battery
life by reducing the depth of discharge of individual cycles for this
particular battery chemistry. This latter effect is also seen in the
trend to longer battery life with increased range.

Despite these variations, we  generally find that the highest con-
centration of battery lifetimes is at the 15 year calendar limit and
that no cases were limited by the imposed 50% capacity limit. This
trend is exaggerated when we  restrict our investigation to the top
quartile of cost effective drive patterns, illustrating that even when
the cost of unachievable VMT  is high and the cost of a new battery
is low, it is difficult to financially justify a battery replacement.

Regarding the sensitivity of cost ratio to drive pattern, we find
that the ratio of the highest BEV-to-CV cost ratio (corresponding to
the least cost-effective drive pattern for a given set of assumptions)
to the lowest BEV-to-CV cost ratio (corresponding to the most cost-
effective drive pattern for a given set of assumptions) ranges from
a low of 1.8:1 to higher than 3.5:1, as seen in Fig. 12.  Note that the
maximum is much larger than the typical value computed using the
low cost of unachievable VMT, and that the range of values spans
a much broader spectrum as well. Further, the trend with vehicle
range is reversed – now the sensitivity of cost to drive pattern is
highest when the electric range is at its lowest value. Calculation
of the BEV-to-CV cost ratio using cross-sectional TCS and National
Highway Travel Survey drive patterns are found to overestimate the
BEV-to-CV cost ratio for 54–77% and 74–93% of the results produced

using vehicle specific longitudinal TCS drive patterns, respectively,
when a high cost of unachievable VMT  is assumed.

Recall that when a low cost of unachievable VMT  is assumed,
our computations showed these two  cross-sectional drive patterns
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Fig. 11. Fraction of drive patterns yielding a 15 year battery lifetime for high cost
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ig. 12. Ratio of highest to lowest BEV-to-CV cost ratio for high cost of unachievable
MT.

nderestimated the cost for most drive patterns. The culmination
f these data suggests that economic analysis of cross-sectional
rive patterns do not provide any consistent representation of the
conomics of the underlying individual vehicles.

. Conclusions

In this study we apply the National Renewable Energy Labora-
ory’s Battery Ownership Model (BOM) to the investigation of the
ensitivity of BEV economics to charging strategy, vehicle range,
nd driving pattern. Charging strategies consider the maximum
OC, frequency of charging events, and timing of charging events
s variables, while vehicle range sweeps from 50 to 100 miles.
or drive patterns we employ 3 months of recorded data from
ach of 398 vehicles in the Puget Sound Regional Council’s TCS.
he use of this data, combined with the BOM’s incorporation of

 high-fidelity battery degradation model, cost-optimal battery
eplacement scheduling, and two alternative means of account-
ng for unachievable VMT  enable this study to quantify effects of
harging strategy, vehicle range, and driving pattern not previously
isclosed in the literature.

Perhaps the most interesting finding of this study is
he level of impact that the cost of unachievable VMT
as on economics and cost-optimal operational strategy. When
hese miles can be completed at low cost, such as when a second,
ange-unlimited vehicle is available in the household, the inclusion
f a 75-mile-range BEV in the household proved to be more cost-
ffective than an additional CV for nearly 25% of the drive patterns
tudied. The 50-mile-range BEV studied suggested higher cost sav-
ngs for a larger proportion of drive patterns, but the frequency at

hich an alternative means of transportation must be employed
ay  be high enough to make this vehicle less cost-effective than

redicted herein. For all range vehicles, the economic sensitivity
o charge strategy is marginalized by the low cost of unachiev-
ble VMT, which minimizes the penalty for battery degradation
nd eliminates financial incentives for battery replacement. Even
ith future battery manufacturing costs at $125 per kWh, battery

eplacement is never economically incentivized in our simulated
cenarios under this low cost of unachievable VMT  assumptions.

Increasing the cost of unachievable VMT  to a level represen-
ative of popular car-share programs, on the other hand, results
n larger incentive to travel more miles on electricity. This effect,
alanced by the relatively high costs of batteries, creates an eco-
omic system favoring slightly longer range and charge strategies
hat foster longer battery life and increased electric VMT. How-
ver, under the assumptions employed herein, the higher cost of
nachievable VMT  also make it highly unlikely that BEV own-
rship would be financially advantageous when compared to a

V.

Also noteworthy, though perhaps not unexpected, is the sen-
itivity of total cost of ownership to drive patterns. Within the
CS dataset employed herein, we have observed that changing the

[

[
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drive pattern can increase the BEV to CV cost ratio by up to a
factor of 3.6, and that this sensitivity is a function of vehicle range,
charge strategy, and the cost of unachievable VMT. Combined with
our finding that drive patterns are unique (no distinct groupings of
vehicles with significantly similar median driving distances, stan-
dard deviations, or other relevant statistical parameters have been
identified), and our demonstration that economic analysis of cross-
sectional drive patterns do not provide a consistent representation
of the economics of the underlying individual vehicles, we con-
clude that longitudinal vehicle- or driver-specific drive patterns
must be treated independently for an accurate and meaningful
economic analysis to be performed. For consumers, this implies
that detailed knowledge of their individual or household driving
patterns is required to make cost-optimal BEV purchase decisions.
Similarly, automobile manufacturers can benefit from the longitu-
dinal drive patterns of their customers to optimize vehicle offerings
that maximize potential sales (noting that cost-effectiveness is only
one of many factors consumers will use in making their purchase
decision).
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